

Culture and Analytics for Resilient Fire/EMS

James Ippolito, EFO, MPA

Deputy Chief, Palm Beach Gardens Fire-Rescue

Carl Niedner

VP Product Development, Levrum Data Technologies

Learning Objectives

Familiarity with Organizational Resilience Definition (Ambiguity) Cultural & Data Elements Data-Oriented Examples Current State / Coming Developments Best Practices

Problem

Fire/EMS Planning is Hard! Complexity Dynamic Environment Multiple Time Scales High-Stakes Mission

Solution

Resilient Fire/EMS Organizations

Resilience

The organization's ability to <u>quickly recover</u> from an incident or events, or to <u>adjust easily</u> to changing needs or requirements.

-- Fire and Emergency Service Self-Assessment Manual, 9th Ed., p.160

Pl's, C's and CC's

Туре	Index	Key Objectives				
		characteristics for the response area are identified, such as key employment types and centers, assessed values, blighted areas, and				
PI	2.A.7	population earning characteristics				
		Risk categorization and deployment impact considerations such factors as cultural, economic, historical, and environmental values, and				
С	2.B	operational characteristics				
		documented through quality response measurements that consider overall response, consistency, reliability, resiliency and outcomes				
С	2.C	throughout all service areas. The agency develops procedures, practices and programs to appropriately guide its resource deployment				
CC	2.C.5	and found those services consistent and reliable within the entire response area				
		current deployment methods for emergency services appropriately address the risk in its service area. Its response strategy has evolved to				
		ensure that its deployment practices have maintained and/or made continuous improvements in the effectiveness, efficiency, and safety of its				
С	2.D	operations, notwithstanding any outside influences beyond its control.				
CC	2.D.1	methodology for assessing performance adequacies, consistencies, reliabilities, resiliencies, and opportunities for improvement				
CC	2.C.7	The agency has identified efforts to maintain and improve its performance in the delivery of its emergency services				
		The performance monitoring methodology identifies, as least annually future external influences, altering conditions, growth and				
CC	2.D.3	development trends, and new or changing risks, for purposes of analyzing the balance of service capabilities with new conditions or demands				
CC	2.D.6	Performance gaps for the total response area, such as inadequacies, inconsistencies, negative trends, are determined at least annually				
		On at least an annual basis, the agency formally notifies the authority having jurisdiction (AHJ) of any gaps in the operational capabilities and				
PI	2.D.8	capacity of its current delivery system to mitigate the identified risks within its service area, as identified in its standards of cover				

Martin, Paredes, Wainer (2018):

- Massive literature review
- 11 common factors
- 8 cultural (communication, leadership, risk tolerance, redundancy, ...)
- 3 planning/data-related

Martin C, Paredes A and Wainer G. "What we know and do not know about organizational resilience." <u>International Journal of Production Management and</u> <u>Engineering</u>, (2018) 6(1), 11-28

Dimensions of Resilience

- Performance
- Planning
- Personal

Performance Resilience

Planning Resilience

Planning processes that scale and adapt well in unpredictable circumstances

Personal Resilience

Organizational structures, processes and strategies that support the <u>well-being</u>, <u>capabilities</u> and <u>effectiveness</u> of the people in the in the organization.

Foresight Performance Resilience

City of Palm Beach Gardens

- Primarily Residential
- Home sizes from 1,200-8,000 ft²
- 59 mi² Population of 54,0000

Palm Beach Gardens Fire Rescue

- CFAI and CAAS Accredited
- ALS Transport
- 5 Fire Stations 121 Firefighters
- 12,000 calls Annually

Foresight Performance Resilience

Challenge #1

Predict Call Volume

- Number of calls
- Type of calls
- Concentration of Calls

Location and Staffing

- Negotiations for Land
- Mutual Aid
- Reliability
- Time Benchmarks

Location and Staffing

Results

- Southern Location
- Estimated 2,800 Calls Annually
- Engine, Rescue, Ladder, Battalion

Exploration

Deployment Enhancements

- Current Deployment: 3 Person ALS Engine, 2 Person ALS Medic Unit
- Critical Task Analysis: Moderate Risk EMS Requires 3 Personnel
- Currently Requires both a Medic Unit and an Engine to meet ERF
- Theory: Adding a 3rd Person to the Medic unit will increase availability/reliability of Engines for concurrent calls.

Activity Level (Units) by Time of Day

Hours Since Midnight

Predicted Daytime Engine Reliability

Simulator Considerations

- Simulated call volume based on historical data
- Season
- Day of Week
- Hour of Day
- Geography ALF - Chest Pain/SOB Warehouse – Fire
- Frequency

Simulator Considerations

- Speed Tables: Based on historical data
- Turnout, On Scene, and Hospital Turnover Time: Based on the mean (most common experience)
- Transport destination is closest ER
- Agency dispatch rules and run cards are factored

Predicted Engine Reliability

Predicted Daytime Engine Reliability

Predicted Daytime Engine Reliability - Effects of Training vs. 3-person Rescue Companies

Lessons Learned

- 5-6 Years Worth of Data
- Trust but Verify Results
- "Try before you pry"

Situational Awareness

Detailed View - Monthly Volume

Planning Resilience

Problem:

Optimize placement of advanced EVP systems at 25 out of 150 signal-controlled intersections

150!/(125!x25!) = **2.9x10²³⁴ choices**!

Solution:

"Pareto Optimization"

(Letting the computer explore...)

125000 - Series1 120000 -. . 115000 -. Pred. Total Time Savings (Seconds) . 110000 -• 105000 -. 100000 -95000 -90000 -. 85000-388 389 390 392 393 391 394 395 396 Pred. 90% Initial Travel Time (Seconds)

90% Travel Time / Total Savings Benefits, Top Solutions (N = 30 -> 90 EVP Systems), Emergent 2018 Data

Where to...?

Personal Resilience

Probability, 4.0+ Continuous Hours' Sleep Per Crew, By Deployment Model

 $\blacksquare \text{Option } A = \text{Option } B = \text{Option } C$

Getting Involved: Resilience Analytics SIG

Best Practices

Best Practices

Foresight ("What Next")

- Multiple future scenarios
- Collaborate with Planning
- Analogy validation (Cunningham/Schumacher)

Exploration ("What If")

- Simulate before piloting
- Model validation (8 points)
- Data/command teamwork
- Hands on work!

- Martin C, Paredes A and Wainer G. "What we know and do not know about organizational resilience." <u>International Journal of Production Management and Engineering</u>, (2018) 6(1), 11-28.
- 2. Vogus T and Sutcliffe K. "Organizational resilience: towards a theory and research agenda." <u>IEEE Proceedings</u> 1-4244-0991-8/07, 3418-3422.
- 3. Saylors E. "Quantifying the negative: how homeland security adds value." <u>Homeland Security</u> <u>Affairs</u>, volume XV. <u>https://www.hsaj.org/articles/9307 11/7/2018</u>. 11-7-2019
- 4. Saylors E. "Fire departments are response models, not production models." Electronic article: <u>https://medium.com/elitecommandtraining/fire-departments-are-response-models-not-production-models-f7943d5c623d</u> 11-7-2019.
- Munsey D. "Determining workload efficiency for San Bernardino County FireProtection District Suppression Crews." National Fire Academy Executive Fire Officer Thesis, September, 2018.

References

1. Cunningham S and Schumacher T. "Structured analogies as a mode of prediction." <u>Proceedings, 5th Annual Conference on Future-Oriented</u> <u>Technology Analysis (FTA)</u>. 2014.

- 2. Green K and Armstrong JS. "Structured analogies for forecasting." <u>SSRN Electronic Journal</u> 23(3):365-376. 2007.
- 3. Gilliland M, et al. "New product forecasting using structured analogies." White paper #104009. SAS Institute, Cary, NC.
- 4. Clemen, Robert T. "Combining forecasts: A review and annotated bibliography." International Journal of Forecasting 5.4 (1989): 559-583
- Maciejewski, Ross & Hafen, Ryan & Rudolph, Stephen & G Larew, Stephen & A Mitchell, Michael & S Cleveland, William & Ebert, David. (2010). Forecasting Hotspots-A Predictive Analytics Approach. *IEEE transactions on visualization and computer graphics*. 17. 10.1109/TVCG.2010.82.
- 6. Zhou, Zhengyi & S. Matteson, David. (2015). Predicting Melbourne Ambulance Demand using Kernel Warping. *The Annals of Applied Statistics*. 10. 10.1214/16-AOAS961.
- 7. Zhou, Zhengyi & S. Matteson, David. (2016). Temporal and Spatiotemporal Models for Ambulance Demand: From Data to Knowledge to Healthcare Improvement. 427-450. 10.1002/9781118919408.ch14.
- 8. Channouf, Nabil & L'Ecuyer, Pierre & Ingolfsson, Armann & Avramidis, Athanassios. (2007). The application of forecasting techniques to modeling emergency medical system calls in Calgary, Alberta. *Health Care Management Science*. 10. 25-45. 10.1007/s10729-006-9006-3.
- 9. Singh, Gyanendra & Sachdeva, S.N. & Pal, Mahesh. (2016). M5 model tree based predictive modeling of road accidents on non-urban sections of highways in India. *Accident; analysis and prevention*. 96. 108-117. 10.1016/j.aap.2016.08.004.
- 10.Setzler, Hubert & Saydam, Cem & Park, Sungjune. (2009). EMS Call Volume Predictions: A Comparative Study. *Computers & Operations Research*. 36. 1843-1851. 10.1016/j.cor.2008.05.010.
- 11.Stewart Fotheringham, A & Crespo, Ricardo & Yao, Jing. (2015). Geographical and Temporal Weighted Regression (GTWR). *Geographical Analysis*. 47. 10.1111/gean.12071.

The "Improvise-Adapt-Overcome" spirit of fire/EMS!

CONTACT:

Deputy Chief James Ippolito: jippolito@pbgfl.com

Carl Niedner: carl.niedner@levrum.com

In the app, go to the session you just attended and click Poll.

	Sessio	ns	* *
Cu	ulture and Analytics Ippolito / Niedne	for Resilient Fi r	re/EMS
	Note	Calend	lar
\odot	March 04, 2020	08:15 AM - 0	9:45 AM
۲	Boca I-III		>
lgg	Progressive Lead	ership	>
۲	Poll		>

There are 3 yes/no questions. Please select your answer and tap Submit to move to the next question.

4	Education Sessions - Test	*	¢
Wil you	I you be able to apply what you've le irself or organization?	arned	to
	Yes		
	No		

The Battalion Chief David J. Farnum Jr. Cerebral BLEVE Slide Is brought to you by...

